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RESOLUTION IV FRACTIONAL FACTORIAL DESIGNS
FOR THE GENERAL ASYMMETRIC FACTORIAL
Donald A. Anderson
and
Ann M. Thomas
ABSTRACT
Resolution IV fractional factorial designs permit estimates

of all main effects in the presence of two factor interactions

which may not be estimable. A lower bound on the number of runs

k ni n1 -n2
required for a resolution IV design in the 40y 83 x8; x Sy
n
Koo ok skk factorial is

k
N> s [;2,(s;-Dn; = (s,-2)]

where sk > sk-l’ sk-2’ cees Sqe No series of designs are known
which meet this bound except for the 2" series and the trivial
case where there are two factors. In this paper a method of
construction is given which yields resolution IV designs near
the theoretical (perhaps unattainable) lower bound. For the

2™ x 3" factorial, the designs exceed the lower bound by six

if n > 3, by four if n = 2, and by three if n = 1. More
generally for the s? X s;,
bound by 52(52-1) if n > 3, by s

S1 < Sys the designs exceed the lower

2— =
2 352+251 if n 2, and by

52(51_1) if n = 1. . In general the designs never exceed the

lower bound by sk(sk-l).




1. Introduction

Box and Hunter (1961) introduced the concept of resolution of a
design as one way to classify fractional factorial designs. A design
is of resolution 2r + 1 if all effects involving r or fewer factors
are estimable when all effects involving r + 1 or more factors are
zero. A design is of resolution 2r if all effects involving r - 1 or
fewer factors are estimable when all effects involving r + 1 or more
factors are zero. Thus designs of odd resolution permit estimation of
all effects not assumed to be zero, while designs of even resolution
permit estimation of certain effects in the presence of other non-zero,
nonestimable effects. 1In practice designs of resolutions IIi, IV, and
V are perhaps of the most interest. A resolution III design allows
estimation of main effects when two-factor and higher order interactions
are negligible, and a resolution V design allows estimation of main
effects and two-factor interactions when three-factor and higher order
interactions are negligible. A resolution IV design, on the other
hand, permits estimation of main effects in the presence of nonestimable
two-factor interactions when three-factor and higher order interactions
are negligible.

The general asymmetric, or mixed, factorial experiment involves
n = § ny factors, ny bf which appear at 54 levels, i =1, ..., k.
Usuai-iotation for the asymmetric experiment is

k

Hlsini = slnl x szn2 X X sknk $
i=

where 8, < Sy Clheve S 8 (When there are only two different numbers

K’

of levels we will write sT X sg.) Statistical literature provides very

b o
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few incomplete resolution IV designs for asymmetric experiments. Most
of the work done in this area has been directed toward the 2" x 3"
series. Margolin (1969a) established that for n > 0, m > 0, the minimum

run requirement for e I designs of resolution IV is
N>3m+ 2n-1) .
When n = 1, this bound becomes
N>3m+1),

and Anderson and Srivastava (1969, 1972) have constructed a series of

resolution IV designs for the 2Wx gt experiment which require only

4(m + 1) runs. In general, for resolution IV designs for the Il sini
i=1 |
experiment the minimum run requirement is given by Margolin (1969a) as |
k
N2> sl 121 (s, = LI, < Aa. ~ 2],

but no series of designs is known to attain this bound. 1
In the following a treatment combination will be denoted as an
n x 1 vector t. The ith coordinate of t will denote the level of the

ith factor, and these levels will be denoted by the symbols 0, 1, 2,

ey si—l. i=1, 2, ..., n. A design in N runs is simply a collection

of N such treatment combinations and will be denoted as an n x N matrix

T - [Eln EZ’ veey EN] .

2. The Method of Collapsing Levels

One procedure of replacing a factor at 8, levels by another factor 3

at 51 levels, where s, < S5» is known as collapsing levels of the factor. i

The method of collapsing levels as a means of design construction was ‘

R oo RN YT "‘J'l‘_.J




introduced in a concise mathematical form by Kishen and Srivastava

(1959), and also by Addelman (1962) in a paper that developed main
effect plans for asymmetric factorial experiments. The technique has
been applied frequently, primarily in the construction of orthogonal
designs of resolution III and resolution V. However, Margolin (1969b)
used 3m+n designs of resolution IV as base plans from which to derive
new designs for the ok e experiment.

Let the levels of a factor appearing at s levels be labelled as
0, 1, ..., s-1. When considering the collapsing of levels, it is
convenient to define the main effects for each factor in terms of the
Helmert orthogonal polynomials. Suppose now that a factor F at 5,
levels is collapsed to a factor FC at 51 lévels, s, < 855 by means of
a mapping as shown in (1).

For levels 0, 1, ..., sy - 1: level £ + level £ (1)

For levels 21 =8, 22 =8 Edyg sees 252'51 =s, - i
level Rj + level qj, where each qj is one arbitrarily

selected level from {0, 1, ..., iy = 1}.

Theorem 1. If the 5, levels of Factor FC are obtained from the 5,y
levels of Factor F by a collapsing scheme of type (1), each main effect
for F¢ can be expressed as a linear combination of U and the main
effects for Factor F.

Proof. Since main effects are defined in terms of the Helmert orthogo-
nal polynomials, the proof can be constructed using the columns of the
Helmert polynomial system partitioned as shown in (2). The individual

columns in (2) are labelled by ag = 1l for the mean, a; for linear

ikt R
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effects, a, for quadratic effects, ..., Esl-l’ Sty 332-1' Under a

collapsing scheme of type (1) the partitioned system (2) becomes

c c c c c c
Level 20 a; 52 o L a 1f1 Eﬁl,. G 352_1
~ 0 1 1 1 e 1 DR e 1
e I 1 1 1 1
2 ]- 0 "2 . ) .
. . . 0 . . .
81-1 | 1 0 0 AR -(sl-l) A 1 (3)
9 1 al(ql) az(ql) G .asl_l(ql) 1R 1
qsz_sl 1 al(q 1) az(qsz_sl)... as]_—l(qsz-sl) R e o S |

Cc

with columns 38, gi, wey 532-1' In (3) for k=1, ..., sy - 1 and

j=1, ..., sy - s, each a, (q,) is determined by (2) as 0, 1, or -k
Bage k'Y

in accordance with the particular choice of collapsing scheme. Since

all main effects are defined in terms of Helmert polynomials, it

suffices to show that each of the first 81 columns of (3) can be ex-

pressed as a linear combination of the columns of (2), i.e., as a

linear combination of a,, 85 «:vy 3, ¢- Now for k = 87, «..y 55 =1
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in (2), a = [1 | - Sy | 01', where 1 is a (k - 1)-component vector of

' all ones and 0 is an [(s, ~ 1) - k]-component vector of all zeros.

Thus a, - 3a,= [9 [ il oo 1 | - 1]', so linear combinations of g

o . ;
8y v 292 can be taken to produce gsl, . és;-l as shown in (4)

Effect
Level | a a8 R B R ) a* i i ak
So 2F %3 ;-1 | sy Zs,-1
o R R R S 1 " R P 0
j 5 A S R 1 1 0 0
> S e 1 0 0
W i AR 1 0 0
| B : . - (4)
s;-1 |1 0 0 ~(s;-1)| 0 . . . 0 ‘:
o L E G TR S T 1
ke R : 0 0 |
PR e S p e o '
Then for k=1, ..., 8 - 1
Cc
= %
| g vyt aledag et o, )00
| - ; (5)
f 895
~ = z (52 G
m-=m
m=0

Since the linear combination of columns specified by (5) determines for
ke by oy sy = 1 the.kth order effect of Fc as a linear combination {

of u and the main effects of F, the proof is complete.

Theorem 2. Consider an experiment consisting of n factors, and suppose

that the 8,y levels of Factor F are collapsed by a scheme of type (1)

to produce the s levels of Factor Fc, where 8 < Sy If all main

effects are defined in accordance with Helmert polynomials and if




interactions are defined by the product definition, then in the collapsed

design each two-factor interaction involving F° can be expressed as a

linear combination of effects in the original design.
Proof. As in the proof of Theorem 1, it suffices to consider a system

of Helmert polynomials since a linear combination involving columns of

e O el A i el

(2) specifies the needed linear combination of effects. By the proof

of Theorem 1 the linear combination of columns of (2) which defines the j

kth order main effect of Fc is

52—1
c
Bt Lo

=
o
o

Let G be any other factor appearing at 5, levels. Since interactions
are specified by the product definition, the interaction of the kth
order effect of FC with the rth order effect of G is, for any k and r,
given by

82-1 j

qr = z °n Znr
m=0

where for m = 0, ..., Sy = 1, - is the (s2 - 1) x 1 vector that

determines the interaction of the mth order effect of F with the rth

order effect of G. The proof is complete.

Theorem 3. Let T be ardesign with corresponding model

By
£y

E(Y) = X

such that the elements of §1 are estimable and the elements of §2 are

not estimable. Then if




o

R TR

(=

B
E »

E1 = Uyl omd £ =00

N

the elements of gi are also estimable.

Proof. Let §1 = CY be the best linear unbiased estimator for 91' Then

E[H,CY] = H E[CY)

= HE[R)]

Since H,CY is unbiased for Bf, the elements of Bf are estimable. The

proof is complete.

Theorem 4. Let T® be the design that results if Factor F in base plan
T is collapsed to Factor F. If T is resolution IV with Y estimable,
then the resolution of T is at least IV.
Proof. Theorems 1 and 2 guarantee that the conditions of Theorem 3
are satisfied. Thus if U and the main effects of F are estimable from
runs in T, YU and the main effects of Fc are estimable from the runs in
%  the proof is complete.

The discussion of this section applies directly to the collapsing

of one factor in an s" base plan. However, repeated application of

Theorems 1-4 guarantees that if T is a resolution IV s design with u

estimable and T® is obtained from T by collapsing any number of factors,

then '1‘c is also resolution IV with u estimable.
The designs presented in the remaining sections of this paper are

the smallest known resolution IV designs for the asymmetric factorial

experiment. The construction technique throughout is to collapse levels
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of treatment combinations in the s" foldover designs given by Anderson
and Thomas (1975). In the 2 experiment the foldover of any treatment
combination is produced by a simple interchange of 0 and 1. For the 3"
experiment we extend the foldover technique by interchanging symbols

in accordance with the symmetric group on three symbols S3 = [e, (012),
(o21), (o1), (02), (12)]. Thus the foldover set generated by any
treatment combination t is 83(_t:_) = [E, (012)t, (021)t, (01)t, (O2)t,
(12)t], where, for example, (012)t is the treatment combination
obtained from t by changing O to 1, 1 to 2, and 2 to 0. It is apparent
that the foldover set of any treatment combination in 83(5) is again
53(5). The foldover set of (0,0,...,0)' = 0 consists of three treatment
combinations, (0,0,...,0)', (1,1,...,1)', and (2,2,...,2)', while the
foldover sets of all other treatment combinations consist of six treat-
ment combinations. Thus the 3" treatment combinations may be parti-
tioned into one set of size three and (3n - 3)/6 sets of size six via
the foldover operation.

There is a natural extension of the foldover technique to the s"
experiment employing the symmetric group on s symbols. The foldovers
of any treatment combination t are obtained by making the interchanges
in symbols indicated by each element of the group, and the foldover
set of the element is Lhe union of all these foldovers. The s treat-
ment combinations are thus partitioned into foldover sets as in the ™
and 3" experiments. TheAfoldover set of (0,0,...,0)' obviously contains
s treatment combinations. The foldover set of any treatment combina-
tions with only two distinct elements will have s(s - 1) treatment

combinations. Similarly, the foldover set of a treatment combination

TTLT  P O RN ey




with k distinct elements contains s(s - 1)(s = 2)...(s - k + 1) treatment i
combinations, k =1, 2, ..., s. '
Let §1 denote the treatment combination with ith coordinate one and
zeros elsewhere. The design T consisting of the foldover sets generated :
by O, §l’ §2, "'§n is resolution IV in N = s(s - 1)n + s runs. The
design permits estimation of the mean Y, and has s degrees of freedom
for estimation of error. The designs given in the remainder of the |

paper are obtained from this series of resolution IV designs by

collapsing levels.

e e e e A

Since most of the existing research concerning asymmetric factor-

T oy

ials has been directed toward the 2" x 3" experiment, Section 3 is

devoted exclusively to that case. 1In Section 4 the notions of Section

A o et i PP

2 are extended to generate designs for the sT X S;

< 5, and s, > 3. Finally, Section 5 introduces the problem of

experiment, where

51

collapsing levels to produce resolution IV designs for the general

asymmetric experiment.

3. The 2™ x 3" Mixed Factorial: Collapsing the 3m+n Foldover Design

For the 3™" factorial experiment withm > 1, n > 1, let T =
[El, Eps eves EN] represent a foldover design of the series presented
in Section 2. Thus N+ 3 + 6(m + n). By collapsing the first m

components of each t, € T one can obtain a design, rsay Tc, for a mixed

i

factorial experiment of the type 2" x 3n, having m factors at two levels

and n factors at three levels. Since T is a resolution IV design with

U estimable for the 3m+n experiment, 7¢ will be a resolution IV design

with U estimable for the 2m X 3n experiment.
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T can be obtained from T according to a collapsing scheme of the
type specified in (1). Suppose that the levels for each two-level
factor are denoted by 0 and 1 and those for each three-level factor

are denoted by 0, 1, and 2. For each Ei = [til’ t12’ iersiy tim' ti,m+1’

c _ C

' - c c
"5 i =1, ..., N, define t; = [t ;, tips «0es o, ty mi?

> & min

1', where for each j, j =1, ..., m, tc. is obtained from tij

Rk ti,m+n ij

by a mapping of the form given in (6).
1. 1level O » level O
2. level 1 » level 1 (6)
3. 1level 2 » level q, q = 0 or 1, selected arbitrarily.

c ks c
Then T = U 't

L mp
The ;oilapsing process, of course, yields some duplication of
treatment combinations for the 2™ x 3" experiment, so that Nc, the
number of distinct runs in Tc, is not equal to N, the number of runms
in T. Margolin's (1969a) bound for the 2™ x 3" fractional factorial
experiment is N > 3(m + 2n) - 3. 1In order to compare the number of
treatment combinations in T¢ with this lower bound, it is convenient

first to partition T into the three subsets TO’ Tl’ and TZ’ which are

displayed as rows of (n + m)-component treatment combinations in

=
~ 5 -T (—Qm (l’o)m Omxn (Z’O)m 0mxn
0
gn 0nxm (1’0)n 0nxm (Z’O)n
gm (0’1)m men (z’l)m men ;
I qnxm (0’1)n Jnxm (z’l)n »
; a3, T, 3. ] 0,3, 21
2
R e A SUGE LR S e T I
i aid
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where (a,b)k denotes a k x k matrix having a's on the diagonal and b's

off the diagonal, O denotes a k x £ matrix of all zeros, gk denotes

kx{
a k x 1 vector of all ones, and ka% denotes a k x £ matrix of all ones.

Consider first the case for whichm > 1 and n > 2.

Theorem 5. Withm > 1 and n > 2, if T® is obtained from T by a collap-
sing scheme of the type specified in (6), then Nc, the number of treat-
ment combinations in Tc, equals 3(m + 2n) + 3, which exceeds the lower
bound by six.
Proof. Let N® represent the number of runs in T¢ and N the number of
runs in T. From array (7) collapsing T0 > Tg, T1 = T;, and T2 -+ T;
according to a scheme of the type given in (6) produces duplication of
runs in TC as follows.

1. Since 2 > qand q = 0 or 1, the collapsing (2, j)m + (q, j)m,
j = 0, 1, produces m duplicate treatment combinations in each of TS and
1]

1 s (&4
2. Since [2§m | 2§n] in T, collapses to [qgm | Zgn] in T,, where

2

l’ég.nﬂ . Ei,nﬂ
nxm nxm

q=0or 1, either

collapses to produce m duplicates in T;. Thus N = N - 3m = 3 + 6(m + n)

- 3m = 3(m + 2n) + 3, which exceeds the lower bound of 3(m + 2n) - 3 by
6. The proof is complete.
Example 1. In the format specified by (7) the 38 foldover design, which

3 X 33 mixed factorial design, appears as

is to be collapsed to a 2

Dadiie 2




4

[0 | Oy 0, (2,005 054
0, lig, SR R
15 | Wdg deg (2,15 Jgy3
33 | Taxs Wlls | Py D),
Ay | hdly " Hes (1,2)g 235,
233 |23xs (0:2)3 |35  (1s2)4)

If q of scheme (6) is selected as 0, the collapsed design is

[05 | @05 055  F00)5 ! O 5 ]
9 | %as 0y il 1 20

L R e T
BOE e e T
g O e (el s Hes

il R L il

with duplicate treatment combinationsvindicated by dotted line enclosures.
Thus the design for the 25 X 33 experiment consists of N® = 36 treatment
combinations.

In the special cases for which n = 1 or n = 2 collapsing scheme (6)
produces some duplication in T¢ in addition to that provided by Theorem

5. The results for these cases are summarized in Theorem 6.

Theorem 6. Suppose T is a 3m+n foldover design and T¢ is a 2™ x 3"

design obtained from T by a collapsing scheme of type (6). Let N denote
the number of treatmen£ combinations in T€.
1. Ifn=1, NC = 3(m + 2), which exceeds the lower bound for
2™ x 3 factorial designs by 3.

2., Ifn=2, N® = 3m + 14, which exceeds the lower bound for

2™ x 32 factorial designs by 4.

Proof. 1: If n =1, array (7) becomes




§
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> ", 7] r—{-)m (l’o)m gm (Z’O)m 91:
0 SR e R R e R O
S5 S e L
1 T 0 1[5 e
o 21,1 0,2 23 | (1,2) 2T
. i 2 ) P R e R e R
which collapses to
i Fe T e | ey O a0y
§ g B 105, o0 A L s
. 1
™ | = gm (0’1)m gm (q’l)m gm
§ L g M S R B R B
¢ al, | O, el | (1,9 eI
’ S i SR o e T e
,3 » As in Theorem 5, each of Tg and Ti includes exactly m duplicate treat-
" ment combinations. However, since n = 1 and every treatment combination
c

of the form [qgm | r]', where r = 0 or 2, appears in TO or Ti, all but m

c
2

= 3(m + 2), which exceeds the theoretical lower bound by only three runms.

of the treatment combinations in T, are duplicates. Thus, if n =1, Nc

2: A similar argument ‘holds when n = 2 in which case

IV IRy Feepy g e o

g gm (l,O)m Qm gm (2,0)m -m gm %
To'1 0 o ST | G SRR (o SN . 0 |
R e R R B SR e 5
Ip | L, 4, 3, | 21y In In |
2| =] Qe It BRI L0 T Sl RARE T | ,
1 PN SN B TR G STen WS S
23 1@ 23 23 | @2 23 23
T, 2 D 20 . 8 - AU TR gt
- d |2 BRSO S SN E TN S T
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|

collapses to i
e L % (l’o)m % % (q,O)m % é
0 cie 83 DD 0 80
b 9. T 1m0 9 f

& I (O’l)m e Uy (q’l)m de |
Ll=li i3 8 193,71 23 |
: B O B SR T TR O |

; ady | 0@, e, aJ | (L), qf ol §
X, 213 ki R g el ;
SRR £ 5 5 IR A T T O s e |

thus producing

ko 7 Lotk ke S e v citdeba T v Ve i,

qgm qgm qgm qgm
E 0 2 or 1 2
E ( 2 0 SR

as duplicate observations in addition to those guaranteed by Theorem 5.

b ol S n e, st

The proof is complete. |

Example 2. If the 38 foldover design of Example 1 is collapsed by

scheme (6) with q chosen as 0 to a 27 x 3 mixed factorial design, the

result is

===
97 (1,0)7 07 l(o’0)7 | 07
0. 0. B 1 0...0 02

| -
S ST R T B
1 pots e e [t
0y (0,00, 0, 1,00, 0, ,
i D B0 Qg '2 )

with duplicate treatment combinations indicated by dotted line enclo-

sures. Thus N® = 27.
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(88 The ST X s; Mixed Factorial: Collapsing the Sg+n Foldover Design

The results of Section 2 extend readily to the problem of

m

2+n foldover

collapsing levels of the treatment combinations in an s

design to produce an ST X sg mixed factorial design. Suppose specifi-

< s, and that the levels for each of the first m

>
cally S, 3, 4 5

factors are labelled 0, 1, ..., 84 * 1 while those for each of the

remaining factors are labelled 0, 1, ..., S, - 1. As in Section 2,

m+n

= [11, i EN] represents the foldover design for the Sy

2

experiment, and Tc = [Ez, Eg, ] represents the design for the

C
veen tye

sT X sg experiment which results from the collapsing process. For j
= ' =
each t; = [t;,, .oy ty s tiomer ti’mm] e 0 L NPT

. c
define Eg = ?1, t o tc i

1200000 tine Ty oo ]' where for each j,

SRR ti,m+n
A= R tij is obtained from tij by a mapping of the type

specified in (8).

For levels 0, ..., s; ~ 1: level L » level £ (8)

For levels Zl =845 aees £82_°1 = s, - 1: level Zj > level a5

where qj is an arbi-

trarily selected

member of {0,1,..,sf4}.

S,
S 2 ’

Then Tc =

n =z

i=1

In order to investigate the number of runs resulting from appli-

cation of collapsing scheme (8), it is convenient to arrange the

v v m+n % "
treatment combinations of the s, foldover design in s, rows as shown

in Table 1.
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In Table 1 each (a,b) denotes an (m + n) x (m + n) matrix with a's
on the diagonal and b's off the diagonal, 9m+n denotes an (m + n)-com-
ponent vector of all zeros, and £m+n denotes an (m + n)-component

vector of all ones.

+ . 5 . .
The sg " foldover design displayed in Table 1 consists of
N=s, + 52(52 - 1)(m + n) treatment cominations, thus exceeding the

2

theoretical lower bound by 52(52 - 1) runs. For the ST X S; factorial

experiment, s, < Sy the number of treatment combinations in a resolu-

1

tion IV design must satisfy
N> s,l(8; - )m + (s, - )0 - (s, - 2)]. (9

The following theorems provide a comparison of Nc, the number of runs
in TC, with the lower bound (9).

Consider first the case in whichm > 1 and n > 2.

Theorem 7. If T is a foldover design for the sz+n experiment, m > 1,
n > 2, and T is obtained from T by any collapsing scheme of type (8),
then N© exceeds the lower bound (9) by 32(32 - 1) runs.

c

Proof. Starting with T as displayed in Table 1, collapse each Ti = Tj’

5. ® 0, - 1, according to any scheme of the type given in (8).

ces S,
The argument in the proof of Theorem 5 extends easily to guarantee
that (s? - ¢ 'a duplicate treatment combinations occur in each T§.

j =1, «.., m. Specifically, (10) below shows the number of treat-

. s 3.l s c
ment combinations that can be eliminated from various subsets of T,

partitioned in accordance with the heavy lines of Table 1.
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0

[ (52—31)m

731(82-31)m ]

(52—31)(s2—sl-1)mJ

(10)

. . 5 o .
Since the number of runs in the sg " foldover design is

N

s, * 82(82 - 1)(m + n)

s, t 82(52 - 1)m + 82(82 - 1)n
=5, * SQ[(S2 - Sl) + (sl - 1D)Im + 32(32 - 1)n,
it follows that

+ 82(82 - sl)m + 32(31 -1)m + s (s, - 1)n - 82(82 = sl)m

S9 )

1]

52[1 + (s1 - 1)m + (s2 - 1)n].
Thus N exceeds the theoretical lower bound given in (9) by

(

Syis, - 1) runs. The proof is complete.

Example 3, Let T be a 5m+n’ n > 2, foldover design which is to be
collapsed to a 2™ x 5™ mixed factorial design, denoted by T. Under
the collapsing scheme of type (8) that maps level 2 + level 0, level
3 > level 1, and level 4 - level 1, T¢ is as shown in (11) with

duplicate treatment combinations indicated by dotted line enclosures.
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In this case N© = 5(1 + m + 4n), which exceeds the lower bound

5(-3 + m + 4n) by exactly 20 runs.

The cases for which n = 1 and n = 2 are considered in Theorem 8.

Theorem g, Suppose T is an Sg+n foldover design and T¢ is an

ST X sg design obtained from T by a collapsing scheme of type (8).

e o 6 e e 6 NC = 32[(81 - 1)m + Sl]’ which exceeds the lower
bound by 52(51 - 1) runs.

2. If n=2, NC = s2[—3 + (s1 - 1)m + 252] + 231, which exceeds

the lower bound by sg ~ 332 + 231 runs.

Proof. If n =1 and T is collapsed according to a scheme of type
(8), each Tg, J = Oy wass sy = 1, includes exactly (32 - sl)m
duplicate treatment combinations. However, every treatment combination

of the form [qgm l r]i qQ = sqs +++5 S, - 1, necessarily collapses to a

2

s . c ‘ s
treatment combination that appears in Tj for some j, j = 0,1,...,31-1.
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o c . s |
Thus for j = Sy =res Sy - 1, each Tj includes a total of (02 sl)m |
+ 32 duplicate treatment combinations. Therefore, if n = 1,
c
N~ = 52[1 + (s1 - 1)m + (s2 R 82(82 ~ bl)

ot

- Sl)]s

= 32[(51 - 1)m + (32 -1) + (1 - s,

which exceeds the lower bound (9) by s,(sy - 1).

2: A similar argument holds when n = 2 in which case each T;,

j = Sys +e+s S, - 1, includes a total of (32 - sl)m + 2 duplicate

treatment combinations. Then N° = 32[1 + (s1 - 1)m + 2(s2 =]

'
,.s
E E
? - 2(s2 - s

), which exceeds the lower bound by 82

1 G 332 + 231.

szk Mixed Factorial Experiment

y, The s?l 3 sg? i B

nq +...+tng

If a foldover design, T, for the s experiment is to be

k
4' collapsed to produce a design, TC, for the 521 X 322 s RS sik mixed
factorial experiment, the problem of determining N® becomes more

. . . . . +tnot
complex. It is therefore instructive to consider first an sgi 2*h3

foldover design, which is to be collapsed to an s x 572 ¢ "3 mixed

il i 3
i i i i < =
factorial design in which s1 S, < Sq- BE T [EQ’ S EN]
n g " i
represents the Sy foldover design, then N = Sy * 33(53 1)(n1+n2+n3).

Ei ) [ coe . ddwy e v s ’
or each % [tll’ s tlUf * "i,ny+ny’ % t1,n1+n2+n3

Ny 3 e L [Fhc c
L %3, Ly K, d6EimRp & B8y both Byt et

ti,n1+n2+n3], where t?j is determined from tij according to a
collapsing scheme as specified in (4.12).

Cage 1 J 23, covy B

&
For levels 0, ..., s, - 1: level £ + level £
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For levels £, = s;, ..., 552_51 =8, - 1, .eey 353_81
= 85 - 1t level Ej -+ level a5 where a; is an arbitrarily
selected member of {0, 1, ..., By 4u]
Case 2: J = n, e s n, + n2
‘“ FPor levels 0, ..., 5, - 1: level £ » level £ 3

2 :

o8qt Sps.rees 383_31 =8g - 1: level Zj >

For levels Es
level q?, where q% is an arbitrarily selected member of
o e S ey - R U
N L i
U

c
t..
=

Then T =
i=1
As in preceding sections, it is convenient to arrange the treat- 3

41 ment combinations of the sg foldover design as shown in Table 2. Each

(a, b) of Table 2 represents an (n; + n, + n3) x (ny +n, + n3)
matrix with a's on the diagonal and b's off the diagonal, which can be

partitioned as shown in (13).

(a’b)n1 anixnz bJ“1X“3

tasb) = an xn (a,b)n bJ (13)
3 2 1 2 2 nzxn3
an3xn1 ana)m'2 (a,b)n3

Theorem 9, which follows, provides a basis for comparison of NC, the

b Ly -
number of runs in T , with the lower bound for asymmetric 321 X 322 X

ng

bt

designs, which is given by

N > syl(s, = 1)n, + (5, - 1)n, + (s, = 1), - (s, - 2)]. (14)
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Consider first the case in which ﬁ,i il n, 2l hand m SoR2r

3
< 5 +not ”
Theorem 9, If T is a foldover design for the sgl N2 m3 experiment,
i n n n s
ny G i n, > 1, and n, > 25and T 1s an 511 X 322 X 333 mixed

factorial design obtained from T by any collapsing scheme of type
(12). then N° exceeds the lower bound (14) by 33(33 ~ 1) runs.
Proof. Starting with T as shoﬁn in Table 2, collapse each 'I‘j > T;’
I e Sq - 1, according to any scheme of the type given in
(12). Theorem 7 of Section 3, applied twice, guarantees that
duplicate treatment combinations can be eliminated from T¢ in accord-

ance with (15), which is partitioned in the same way as Table

23

(15)
0 J 51(32-sl)n1 31(53-92)(n1+n2)
(52—51)n1 (s2—sl)(s2—sl-1)n1 (52—51)(53~32)(n¥:22)
L(s3—sz)[(32—8111)n1 3t n2] |(53—32)(53~52-1)@ﬁ%)

2
Thus each T?, i | Olgy hetieiiny Sy - 1, includes Z (s3 - Si)ni duplicates
i=1

3

so a total of 83[(33 - si)n1 + (s3 - 52)n2] runs can be eliminated from

(e} c P i :
T . Since the number of runs in the sgi+n2 "3 foldover design is

N

S, + 33(33 - 1)(n1 * Nyt n3)

sy t 83[(83 - sl) + (s1 - 1)]n1 + 53[(53 - 32) + (s2 - 1)]n2
+ 33(33 - 1)n3;

it follows by subtraction that

N~ = s + s3(s1 - 1)n1 + s3(s2 - 1)n2 + ( - 1)n

3 S 3

sa[} + (s1 - 1)n1 t (s, - 1)n2 + (53 - 1)n3].

2

which exceeds lower bound (14) by s,(s,-1) runs. The proof is complete.
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n1+n2+n3
)

Example 4. Suppose a 5
to a 2™ X 3n2 X 5n3

n, > 2, foldover design is collapsed

asymmetric factorial design under the collapsing

scheme (16).

For the n, factors at two levels: 1level 2 = level 0
level 3 > level 1
level 4 > level 0
(16)
For the n, factors at three levels: level 3 -+ level 0
level 4 » level 2
T¢ is shown in (17) with duplicate treatment combinations indicated

by dotted line enclosures. Appropriate dimensions are indicated by

subscripts in the first column.
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152 n, = 1 or n, = 2, duplicate treatment combinations in addition

to those guaranteed by Theorem 9 may arise. However, the exact
number of additional duplicates depends on the particular choice of
collapsing scheme (12). Specifically, the amount of duplication is
affected in a rather complex way by how often qj = q?, j = 32—si+1, el

s5-1, by whether each q? is selected from {0, ..., 8 = 1} or from

{sl, oo S, - 1}, and by how often q = a3 and q? = q?’ for any

pair of levels tj and Ej' with j # j'. However, one simple result

deserves mention. If ng = 1, and a collapsing scheme is selected so

PR TRETEERE T Zj -> qy = q%, where g5 q? is

an arbitrarily selected member of {0, 1, ..., Sy - 1}, then T includes

that for j = S, = S

an additional (83 - 32)(53) duplicate treatment combinations. This

result is illustrated in Example 5.

5L, foldover design is collapsed to a

Example 4.5. Suppose the 5

™M x 3"2 x5 asymmetric factorial design by collapsing scheme (18).

For the ny factors at two levels: level 2 * level 0

level 3 =+ level 1 (18)
lJevel 4 - level 0

For the n, factors at three levels: level 3 -»> level 1

level 4 > level 0

The resulting design is shown in (19) with duplicate treatment combi-

nations indicated by dotted line enclosures. Appropriate dimensions

are indicated by subscripts in the first column,
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For k > 3 the problem of collapsing a foldover design for the

Eaaat - : n n
sl Nk experiment to create a design for the s x 572 x...x skk

k i1 2
asymmetric experiment, $q %8y Suus S8, becomes increasingly compli-
) kP :
cated. For each Ei = [til’ et ti,n1+...nk] Al 1, .., N, define
¢ _rue c ; e !
T = [til’ s ti,n1+...+nk:1'°ti,n1+...+nk] , where tij is determined

from tij according to a collapsing scheme as specified in (20).

Cage 22 = s ool n1 (20)
For levels 0, ..., s, - 1: level L > level £
For levels 11 = Sy eees lsk_sl o 1: level Ej > qji, where
qj is an arbitrarily selected member of {0, 1, ..., 81—1}
1
Casem (form = 2, ..., k- 1): j = no g ey ey

For levels 0, ..., s - 1: level L »> level £

F 31 o 4 = ARG = - 1: £l
or levels Sm'51+1 Sh? ’ Sk'sl Sy 1 level 3 level

qjm’ where qjm is an arbitrarily selected member of

floneid oy B b
If T¢ is obtained from T by a collapsing scheme of type (20), the
exact number of duplicate treatment combinations in T depends on 0
and on the particular choice of collapsing pattern. However, Theorem

10 provides a lower bound for the number of duplicate runs, thus

s : . c 3
providing a basis for comparison of N~ and the theoretical lower

bound
k
N z_sk[g (e = Wy = (8 = 2)]. (21)
Theorem 10. If T is a foldover design for the SEI*"'*“R experiment
and TC is an s™ X an X ... x s'K mixed factorial design obtained from |

1 2 k

T by any collapsing scheme of type (20), then N* exceeds the lower

bound (21) by no more than sy(sy - 1) runs.

o
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Proof. Let Tg, LT OMEa s Sy - 1, be defined as in Section 3.
Then repeated application of Theorem 7 guarantees that each T§
k-1
includes at least z (s3 - si)ni duplicates, so a total of
k=1 i=1 f
Sy [ Z (sk - Si)ni] treatment combinations can be elirinated from TC.
s nqt...tny . .
Since the number of runs in the ) foldover design is
k
N=s, +s(s - 1)K % n;)
k-1
= o E Sk[(sk - Si) + (si - 1)]ni + Sk(sk - 1)nk,
it follows by subtraction that
k
c
N :_sk[l + g (si - 1)ni],
which exceeds lower bound (4,21) by sk(sk - 1) runs. The proof is
complete.
Example 6. Suppose a gt azERgt 2 & tdover design is collapsed to a
2" % 372 x 473 X 52 asymmetric factorial design by means of mapping
(22).
level 2 > level 0
level 3 + level 1 (22)

level 4 » level 1

T¢ is shown in (23) with duplicate treatment combinations indicated
by dotted line enclosures. Appropriate dimensions are indicated by

subscripts in the first column.
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